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Abstract—This paper presents the design, fabrication, and
evaluation of a W-band image-rejection downconverter based
on pseudomorphic InGaAs/GaAs HEMT technology. The im-
age-rejection downconverter consists of a monolithic three-stage
low-noise amplifier, a monolithic image-rejection mixer, and a
hybrid IF 90° coupler with an IF amplifier. The three-stage
amplifier has a measured noise figure of 3.5 dB with an asso-
ciated small signal gain of 21 dB at 94 GHz while the image-
rejection mixer has a measured conversion loss of 11 dB with a
+10 dBm LO drive at 94.15 GHz. Measured results of the com-
plete image-rejection downconverter including the hybrid IF
90° coupler and a 10 dB gain IF amplifier show a conversion
gain of more than 18 dB and a noise figure of 4.6 dB at around
94 GHz.

I. INTRODUCTION

HE W-band downconverter is a key component for

smart munitions and millimeter-wave imaging appli-
cations. A fully integrated pseudomorphic (PM) In-
GaAs/GaAs HEMT downconverter MMIC, which con-
sists of a two-stage low-noise amplifier and a single-
balanced diode mixer, has been successfully developed
recently [1]. The complete monolithic downconverter ex-
hibited 5.5 dB conversion gain and 6.7 dB double side-
band (DSB) noise figure with a 95 GHz LO and a 1 GHz
IF. Although this monolithic downconverter has shown
good performance at W-band and represents state-of-the-
art in millimeter-wave monolithic device and circuit tech-
nology, insertion of the W-band MMIC into existing sys-
tems and evolution of new system applications rely on
further improvement of the downconverter performance.
The intention of this work is to explore the feasibility of
improving the noise figure and conversion gain of the ex-
isting monolithic downconverter.

A W-band image-rejection (IR) downconverter based on
0.1 pum PM InGaAs/GaAs HEMT technology has been
developed. The IR downconverter consists of a mono-
lithic three-stage low-noise amplifier, a monolithic im-
age-rejection mixer (IRM), and a hybrid IF 90° coupler
with an IF amplifier. The three-stage LNA improves the
overall system sensitivity while the IRM receives signals
at frequencies either lower or higher than the LO fre-
quency and allows suppression of image signals. More-
over, the IRM eliminates the need of a preselect image
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suppression filter, which is difficult to realize for a low IF
frequency W-band receiver. The IRM consists of two sin-
gle-balanced (SB) mixers which were designed using the
HEMT gate Schottky diodes inherent to the process and
can be integrated monolithically with the LNA. The three-
stage amplifier has a measured noise figure of 3.5 dB with
an associated small signal gain of 21 dB at around 94 GHz
while the IRM has a measured conversion loss of 11 dB
with only 10 dBm LO drive. The IRM provides more than
12 dB rejection at the image frequency with a hybrid IF
90° coupler. Measured results of the complete downcon-
verter including the hybrid IF 90° coupler and a 10 dB
gain amplifier show a conversion gain of more than 18 dB
and a noise figure of 4.6 dB at around 94 GHz. This is
the best reported performance of a W-band downconverter
and shows significant improvement compared with pre-
viously reported results in terms of noise figure and con-
version gain. The success of this image-rejection down-
converter development is attributed to the excellent device
performance and a rigorous design/analysis methodology.
This state-of-the-art performance shows the potential of
the emerging technology for low cost W-band receiver ap-
plications.

The PM InGaAs/GaAs HEMT device characteristics
are described in Section II and the MMIC circuit design
and fabrication are presented in Sections III and IV, re-
spectively. Section V summarizes the circuit performance
and is followed by a conclusion.

II. DEVICE CHARACTERISTICS AND MODELING

The devices reported in this paper have been optimized
for high gain operation at W-band. The 22% PM InGaAs
HEMT uses planar doping to achieve high channel aspect
ratio as well as higher electron transfer efficiency. A cross-
section and a SEM photograph for the gate area of the
HEMT device are shown in Fig. 1(a) and (b). The 0.1 um
T-gate PM InGaAs HEMTs fabricated using this process
typically have a dc transconductance (G,,) of 670 mS /mm
with a cutoff frequency ( f7) as high as 140 GHz. The dis-
crete HEMT device dc yield in process control monitors
(PCMs) on the 3" diameter GaAs wafer is 83%. This pro-
cess has demonstrated excellent yield and reproducibility
over the past two years and is presently transferred to pro-
duction in our manufacturing process line.

The HEMT linear small-signal equivalent circuit pa-
rameters are obtained by carefully fitting the measured
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Fig. 1. (a). The profile and (b) the SEM photograph for the gate arca of a -
0.1 um PM InGaAs/GaAs HEMT device. )

small-signal S-parameters to 40 GHz. Noise model pa-
rameters used for the simulation are obtained from fitting
measured noise parameters to 26 GHz. The small signal
equivalent circuit and noise model of a 40 pum HEMT
biased at peak transconductance and 2 V drain voltage
was reported in' [3]. These parameters are consistent with
estimations based on device physical dimensions and pa-

rameters. A set of specifically designed on-wafer calibra-

tion standards consisting of co-planar wave-guide (CPW)
open, short, load and through patterns which have the
same feed patterns as the device to be tested are modeled
carefully via a full-wave EM analysis [2]. The measure-
ment accuracy can be ensured by using these calibration
patterns, thus improving the accuracy of the frequency
extrapolation model to W-band. The details of this mod-
eling procedure was documented in [3].

III. Circurr DEsiGN

Fig. 2 illustrates the block diagram of image-rejection
downconverter. It consists of a three-stage LNA, an IRM,
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Fig. 2. Simplified block diagram of image-rejection downconverter.
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Fig. 3. (a) Circuit schematic and (b) Photograph of three-stage LNA.

a hybrid IF 90° coupler, and an IF amplifier. The LNA
and IRM are monolithic MMICs whereas the IF 90° cou-
pler and IF amplifier are off-the-shelf components. The
following describes the design of LNA, IRM and down-
converter circuits.

Low-Noise Amplifier

Fig. 3(a) and (b) show a circuit schematic and photo-
graph of the monolithic three-stage LNA. The chip size
is 3.2 x 1.2 mm’. It is a single-ended design and each
stage utilizes a 40 um HEMT with four gate fingers.- The
circuit is designed for low noise figure based on a reactive
matching technique. The matching networks are quasi-low
pass filter structures and realized by cascade high-low
impedance microstrip lines on 100 pm thick GaAs sub-

‘strate. Edge-coupled lines are used for dc blocking and

radial stubs are employed for RF by pass. N* bulk resis-
tors are used to ensure bias network stability, and a re-
active ion etching (RIE) process is used to fabricate back
side via holes for the RF grounding. Details of the design
methodology were described in [3].

Image-Rejection Mixer

Fig. 4(a) and (b) show a circuit schematic and photo-
graph of the monolithic IRM. The chip size is 2.1 X 1.6
mm?. The IRM was realized with two single-balanced
diode mixers, a W-band Lange coupler, and a Wilkinson
power divider. The RF and LO signals are fed in quad-
rature and in phase, respectively, to the mixer. The Lange
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Fig. 4. (a) Circuit schematic and (b) Photograph of image-rejection mixer.

coupler is used for the RF port to achieve a better input
return loss.

The single-balanced mixer is the key element of the
IRM and was designed with a 180° rat-race hybrid for the
RF and LO signal inputs and a matched pair of 16 um
InGaAs /GaAs HEMT gate Schottky diodes for the mix-
ing elements. In order to minimize the mixer size, the
diodes are positioned inside the ring and both the MIM
capacitor and shunt radial stubs are used to realize the IF
low pass filter. The low pass filter provides a short for RF
and LO frequencies at the mixer output port. The diode
matching circuits are realized with high impedance mi-
crostrip lines and provide the path for diode dc return. No
dc bias is included for the current mixer circuit although
a dc bias may be added to reduce the required LO power
for the same conversion loss. The diode structure and
model were reported in [1].

Image-Rejection Downconverter

The W-band IR downconverter is built with two MMIC
chips mounted on a test fixture and combined externally
with a 200-500 MHz hybrid IF 90° 3-dB coupler. Since
the RF signals are 90° out of phase and the LO inputs are
in phase, the upper and lower IF mixing sideband are sep-
arated at the two output ports of the IF 90° hybrid. The
desired sideband is fed to a 10 dB IF amplifier while the
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image sideband is terminated at a resistive load. The prin-
ciple of an IR mixer is explained in [4].

IV. CircuiT FABRICATION

Both LNA and IRM MMIC chips were fabricated on
an InGaAs/GaAs heterostructure HEMT wafer. The
MMIC process is similar to that previously reported [5],
[6], it begins with multiple oxygen implantations to ob-
tain a device isolation of better than 10’ ohms. Ohmic
contacts are deposited using a Ni/AuGe/Ag/Au evap-
oration and lift-off process, and are alloyed using a rapid
thermal anneal at 540°C. The 0.1 um Ti/Pt/Au T-gate
defined using a Philips EBPG-3 electron-beam lithogra-
phy system with a two-layer PMMA/P(MMA-MAA) re-
sist. Discrete device yields are typically greater than 80%
using this T-gate process. A thin layer of metal (Ti-Au)
is deposited and lifted-off to form the low resistance first
level metal interconnects. The airbridge and transmission
lines consist of 2 um of Ti/Au. Via holes with a diameter
of 60 um were etched through the 100-pum thick GaAs
substrate using RIE to provide low source grounding in-
ductance.

V. CIrcuiT PERFORMANCE

The amplifier, mixer, and IR downconverter have been
tested in waveguide test fixtures. Finline transitions are
used to couple the W-band signals from waveguide to mi-
crostrip. The insertion loss of two transitions (back to
back) is about 1.4-2.0 dB for 88-96 GHz frequency
range. All the measurement data described below has been
corrected for the RF and LO transition losses.

Low-Noise Amplifier

The measurement data from 91-97 GHz is presented in
Figure 5. The noise figure is better than 4 dB and the
associated small signal gain is greater than 20 dB across
the band. At 94 GHz, the amplifier demonstrates 21 dB

“gain with a 3.5 dB noise figure. The noise and gain vari-

ation are within 0.5 and 2 dB, respectively, across the
band. The data was taken with a drain voltage of 2.5 V
and a gate voltage of 0 V for each stage. Other chips on
the wafer showed similar performance. The improvement
of noise performance compared to previously published
results [31, [7] is due to the improved noise match.

Image-Rejection Mixer

Before testing the IR mixer, the performance of the SB
mixer used in the IR mixer was verified. Fig. 6 illustrates
the measured and simulated mixer conversion loss as a
function of the LO power. The RF and LO frequencies
are fixed at 96 and 96.25 GHz, respectively. The conver-
sion loss is about 9.5 dB when LO power is greater than
7 dBm and remains almost unchanged for greater LO
powers. The agreement between the measured and simu-
lated results is within 2 dB for LO powers greater than 3
dBm.
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Fig. 5. Measured noise figure and associated small-signal gain W-band
three-stage MMIC LNA from 91-97 GHz.
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Fig. 6. Measured and simulated conversion loss of the single-balanced

mixer as a function of the LO power. The RF and LO frequencies are 96
GHz and 96.25 GHz, respectively.

The IR mixer MMIC was mounted on a fixture and
tested with a NARDA 200-400 MHz hybrid 90° 3-dB
coupler connecting to its two output ports. To test the level
of image rejection, one of the coupler outputs (for ex-
ample, the Q-port in Fig. 2) is terminated with 50-ohm
resistor and the conversion loss from the mixer input to
I-port output is measured for both lower sideband (LSB)
and upper sideband (USB) RF frequencies. The image re-
jection for I-port is calculated as the difference of the con-
version losses for LSB and USB. The Q-port image rejec-
tion is also measured with the I-port terminated with 50-
ohm. Fig. 7(a) and (b) show the measured conversion loss
and image rejection for I-port and Q-port, respectively,
for a +10 dBm LO power at 94.15 GHz. The conversion
loss is approximately 11 dB for both I-port and Q-port
whereas the image rejection is in general higher for the
Q-port. The actual image rejection is dependent upon the
IF frequency.
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Fig. 7. Measured conversion loss and image-rejection of the (a) I-port and

(b) Q-port IF outputs. A NARDA 215-450 MHz $0° hybrid was used to
combine the two mixer outputs.

Image-Rejection Downconverter

The three-stage LNA, IR mixer, hybrid IF 90° coupler,
and a 10 dB gain IF amplifier were assembled together to
build the IR downconverter. Fig. 8(a) shows the mea-
sured noise figure and gain of the downconverter for IF
frequency between 200 MHz and 500 MHz. The LO
power is +10 dBm at a fixed frequency of 94.15 GHz.
The gate and drain for the LNA are biased at zero and
three volts, respectively. The downconverter has less than
4.6 dB noise figure and more than 18 dB conversion gain
across the IF bandwidth. The measured compression
characteristic of the IR downconverter is plotted in Fig.
8(b). The calculated output 3 dB compression point is
about —2 dBm. This is the best noise figure reported to
date for a W-band monolithic front end IR downconverter.
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Fig. 8. Measured (a) noise figure and associated conversion gain and (b)
compression characteristic of IR downconverter. The IR downconverter
consists of the monolithic LNA and IR mixer chips, a NARDA 215-450
MHz 90° hybrid, and a NEC UPG100B amplifier.

VI. CoNcLUsION

A W-band image-rejection downconverter based on PM
InGaAs /GaAs HEMT device technology has been de-
signed, built and tested. This downconverter integrates a
three-stage MMIC LNA, an IR MMIC mixer, a hybrid IF
90° coupler, and an IF amplifier into one unit. Measured
results of the complete downconverter show a conversion
gain of greater than 18 dB and a noise figure of less than
4.6 dB around 94 GHz. This is the best reported perfor-
mance of a W-band downconverter and shows significant
improvement compared with previously reported results
in terms of noise figure and conversion gain. The success
of this image-rejéction downconverter development is at-

tributed to the excellent device performance and a rigor- .

ous design/analysis methodology. Furthermore, this state-
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of-the-art performance shows the potential of MMIC in-
sertions into low cost W-band receiver applications.
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